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Determining Neural Network Hidden Layer Size using Evolutionary Programming

John R. McDonnell & Don Waagen
NCCOSC, RDT&E Div.

San Diego, CA

Abstract

This work Investigates the application of evolutionary programming, a stochastic search technique, for
dimultaneously determining the weights and the number of hidden units in a fully-connecte4 multi-layer neural
network. The simulated evolution search paradigm provides a means for optimizing both network structure and
weight coefficientz Orthogonal learning is implemented by independently modifying network structure and weight
parameters Different structural level search strategies are investigated by comparing the training processes for
the 3-bit parity problem. The results indicate that evolutionary programming provides a robust framework for
evolving neural networks.

Introduction

The traditional neural network design generally consists of a fixed architecture. The static structure determined by
the network designer can impose constraints on the network which may not allow for an adequate solution or can
result in an unnecessarily complex arrangement with exce paramete This work investigates the application of
evolutionary promgamming for simultaneously optimizing the network structure as well as the weight coefficients.
The network weights are stochastically modified using Gaussian mutations proportional to the network's objective
function. Thre mutation strategies are investigated in the optimization of the network architecture. The first
method incorporates the standard deviation of the hidden unit activation levels over all of the training patterns into
the stochastic search process As a comparison, the second and third methods are purely random approaches.

Evolutionary programming (EP) is a neo-Darwinian, multi-agent, global optimization paradigm that provides a
systematic means for employing stochastic search. EP can be applied to the neural network design process to
determine both the network structure as well as the network parameters. This investigation focuses on optimizing
the number of hidden units in a fully-connected feedforward network. A potential benefit of evolving near
inimal size neural networks is that hardware implemetations or software emulations may realize a significant

increase in throughput for designs which require near real-time capability.

Previous work' has utilized EP to reduce the number of connections and, as a result, the number of active hidden
units. Others have incorporated variable network structures into the training process. Ash 2 has developed the
dynamic node creation algorithm which created new nodes in the hidden layer when the training error rate fell
below an arbitrarily chosen critical value. Hiose et al.3 use a similar approach for node creation, but also remove
nodes when small error values are attained. Aylward and Anderson4 postulate a set of rules based on error rate,
convergence criterion and distance to the desired error level. If the rules are not continually satisfied, then a new
node is added. Fahlman and Lebiere5 add additional units which am fully connected from previously generated
hidden units and the input neurons. Thei cascade-corelation architecture selects the best additional hidden unit
from a pool of candidate units in minimizing the network eror. Le 6 generates additional neurons based on
temporal changes in a neuron's weight space and removes neurons based on activity variance and the distance
between similar weight parameter vectors. While not as sophisticated as the techniques used by Lee6 , the approach
employed in this work does not require an overt amount of computation for a single network, but instead exploits
the stochastic multi-agent search process to evolve a single suitable network from a multitude of candidate
networks which constitute a population.
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The IP algorithm utilized in this work is based on the paradigm given by Fogel7. A modification was made to
amount for evolving disparate quantities such as the network weights and the number of hidden units. The
following steps descrWe the EP optimization algorithm employed heren:

1. Fonr an initial population P" 1 rw) of •ize 3M. The weight coefficients w associated with each parent element
P, are randomly lnitlaltzea
Z Assign a cost J, to each element Pt(w) in the population baed on the objective function.
3. Reorder the population based on the number of wins generated from a stochastic competition procen
4. Generate offspring (PN.... Pm.,) from the highest rank Nelements (P..... PV.N) in the population. The first
set of Offspwig (PN.... P2V-.) are generated by perturbing the weights w, and the second set of offspring (P 2....
P Dq.) are genierated by the stochastics gowvrning the selection of the hidden nodes (as discussed below).
5. Loop to step 2.

Figu 1 illustrates the evolutionary search process over a single generation. Other techniques (such as
backpropagation) could also have been implemented to generate the offspring with a new weight set.

Initially, a population consisting of 3N fleeforward networks is generated. The weights for each network are
instantiated from a uniform U(-O.5. 0.5) distribution. The maximum number of hidden neurons are selected from a
user specified search domain. The objective flunction J is a lnearly-.wighted combination of the number of hidden
nodes N, and mean mm-squared pattern error E and is determined according to J = aE + p4,. To emulate the
probabiistic nature of survival, a competition process ts place where individual elements compete against
randomly chosen members of the population. A network receives a "win for every comparison with an inferior
network (i.e.. inferiority equals higher cost). The N networks with the most wins are retained and used to generate
offifring twrks

The first set of offspring networks are generated simply by perturbing the parent set of weights according to
W1,-i •" + 617 wher 6W is a multivariate normally distributed random variable parameterized by N(O, Sf'1)
with a sclng coefci -S and an objective tion J for eah parent network The scaling faor canW e
coded tprobaItc analog to the step size used in gradient based methods. A second set of offspring are
generated by modffm the number of hidden elements which am active. This is done by activating or deactivating
the outputs of ndiomly selected hidden neurons. Three diffent strategies to network optimization are
investigated in this work. The first method is based on the variance in the activation level of a randomly selected
neoron. If the selected hidde node is active, it is deactivated in a probabilistic manner based on the standard
deviation oof the activation level as determined over all input patterns for a given set of weights. The deactivation
proablt is given by Pd - I wheo r Where . is tie maxmum deviation of al the active neurons. If the
selected node i is inactlive, then its probability of being activated is determined by P. = ol /oA7 where or.



max(arj, or..) so that P8 < 1. The second method changes the state of a randomly selected neuron. The third
method changes the state of a randomly selected neuron 50% of the time. Even if a neuron is deactivated, its
weights will continue to be updated in the event that the neuron later becomes active. Bias nodes always remain
active. After the competition process, the stochastic search procedure is repeated.

In the ensuing investigation, the standard deviation method outlined above is referred to as Strategy 1, the purely
random method is referred to as Strategy 2, and the purely random technique with an additional 50% probability of
changing a neuron's state of activation is referred to as Strategy 3. Strategy 3 was incorporated to investigate the
effects of artificially constraining the search versus the more rigorous search that takes place when a randomly
selected neuron's activation state is determinically changed.

Results

Training trails for the 3-bit paity mapping were conducted for all three strategies. The runs were arbitrarily
stopped after 500 generations. Each network was initialized with the maximum 20 hidden nodes fully activated.
All of the runs were conducted for 10 parent networks and 20 offspring networks: 10 offspring networks with
perturbed weight sets and 10 offspring networks with potential for structural modifications. The objective function
is given by J = E + 0. 01.N and the mutation scaling factor was set as Sf = 50. Figure 2 shows the MSE and
number of nodes of the network with the best (i.e., lowest cost) J at each generation from a sample training run
using Strategy 1. Note that over the first 50 generations the optimization process is primarily reducing the number
of hidden nodes. After 90 generations the network has converged to its final form of 3-3-1.

To evaluate the performance of the three different strategies, comparisons are made for the best network at each
generation averaged over ten trail runs. The average MSE of the best network for each strategy is shown in Figure
3. Strategies I and 2 converge to roughly the same MSE by 500 generations while Strategy 3, the artificially
constrained search, has an average MSE which is 4x greater due to poorer convergence characteristics. The
average number of nodes of the best network for each strategy is shown in Figure 4. Both Strategies 1 and 2
converge to approximately the same number of active nodes by 150 generations. The average cost of the best
network for each of the strategies is shown in Figure 5. Strategies I and 2 are very similar above 150 generations
while Strategies 2 and 3 are roughly the same below 100 generations. There appears to be a short transition phase
over which the Strategy 2 search reconnects neurons which are significant to the networks performance. The
Strategy 3 search is slower to achieve similar results due to the artificial constraints imposed on modifying the
network structure. The variance based search does not place an excess emphasis on the number of active neurons
and is (on average) primarily disconnecting hidden units.
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Although a small sample size was used to determine fth performance chamdceristics using three differenit network
structure level modification straftees fth results appear to indicate that artificially constraning the evolutionary
search process impedes fth construction of superior networks Incorporating knowfedg into the search process
may be advantageous in directing the search, but als comes with added computational cost which was not
accounted for in this investigation. In contrasting the purel random approach with the variance-based strategy,
there is no significant diflfere= by fth final generation. As a result, fth simulated evolution parbiign appears to
be a robust approach for sImlaeuy determining fth munber of hidden nodes and weight coefficients. Further
investigations should be undertaken in analyzing the -flbcl of the cost finction on stochastic search process.
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